Introduction to zeta integrals and L-functions for GLn

نویسنده

  • Paul Garrett
چکیده

All known ways to analytically continue automorphic L-functions involve integral representations using the corresponding automorphic forms. The simplest cases, extending Hecke’s treatment of GL2, need no further analytic devices and very little manipulation beyond Fourier-Whittaker expansions. [1] Poisson summation is a sufficient device for several accessible classes of examples, as in Riemann, [Hecke 1918,20], [Tate 1950], [Iwasawa 1952], and [Godement-Jacquet 1972], and including treatment of the degenerate Eisenstein series needed for the GLn ×GLn Rankin-Selberg convolutions. [2] For f a cuspform on GLn the most natural L-function obtained by an integral representation is the Hecke-type integral representation, also involving a cuspform F on GLn−1,

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

CRITICAL VALUES OF RANKIN–SELBERG L-FUNCTIONS FOR GLn ×GLn−1 AND THE SYMMETRIC CUBE L-FUNCTIONS FOR GL2

In a previous article [35] an algebraicity result for the central critical value for L-functions for GLn × GLn−1 over Q was proved assuming the validity of a nonvanishing hypothesis involving archimedean integrals. The purpose of this article is to generalize [35, Thm. 1.1] for all critical values for L-functions for GLn×GLn−1 over any number field F while using the period relations of [37] and...

متن کامل

A General New Algorithm for Regulaization of Singular Integrals in Three-Dimensional Boundary Elemnts

In this paper an algorithm is presented for the regularization of singular integrals with any degrees of singularity, which may be employed in all three-dimensional problems analyzed by Boundary Elements. The integrals in Boundary Integrals Equations are inherently singular. For example, one can mention the integrals confronted in potential problems to evaluate the flow or the gradient of the f...

متن کامل

A General New Algorithm for Regulaization of Singular Integrals in Three-Dimensional Boundary Elemnts

In this paper an algorithm is presented for the regularization of singular integrals with any degrees of singularity, which may be employed in all three-dimensional problems analyzed by Boundary Elements. The integrals in Boundary Integrals Equations are inherently singular. For example, one can mention the integrals confronted in potential problems to evaluate the flow or the gradient of the f...

متن کامل

On a generalization of Chen’s iterated integrals

Values of polyzeta functions at tuples of integers may be expressed as iterated integrals in which one or other of the holomorphic 1-forms on P1\{0, 1,∞} are repeated. In this paper, a definition is given whereby such integral expressions may be interpolated to give the values of the polyzeta functions at suitable tuples of complex numbers. The generalized ‘iterated integrals’ which result sati...

متن کامل

Generalized Log Sine Integrals and the Mordell-tornheim Zeta Values

We introduce certain integrals of a product of the Bernoulli polynomials and logarithms of Milnor’s multiple sine functions. It is shown that all the integrals are expressed by the Mordell-Tornheim zeta values at positive integers and that the converse is also true. Moreover, we apply the theory of the integral to obtain various new results for the Mordell-Tornheim zeta values.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011